施宇智 1,2,3,4,*赖成兴 1,2,3,4夷伟成 1,2,3,4黄海洋 1,2,3,4[ ... ]程鑫彬 1,2,3,4,**
作者单位
摘要
1 同济大学物理科学与工程学院,同济大学精密光学工程技术研究所,上海 200092
2 先进微结构材料教育部重点实验室,上海 200092
3 上海市数字光学前沿科学研究基地,上海 200092
4 上海市全光谱高性能光学薄膜器件及应用专业技术服务平台,上海 200092
5 香港理工大学电机与电子工程学系,香港 999077
6 新加坡国立大学电气与计算机工程系,新加坡 117583
光镊技术利用光和物质之间动量交换产生的光力对细小颗粒进行操控,具有无接触、操控尺寸小、精度高等特点,在基础物理、量子计算、生物医学等领域得到了广泛的应用。其中,横向光力(也称光横向力,OLF)是一种垂直于光的传播方向且与场强度梯度无关的特殊光力。近十年来,OLF的理论研究和实验探索成为了热点课题,在手性颗粒等超精密分选、光动量探测等方面有重要应用。从OLF的原理和产生条件、不同物理机制,以及在生物医学和物理化学等领域的应用等方面出发,对OLF的发展进行回顾和讨论,并对新的产生机制和更多的潜在应用与挑战进行展望。
横向光力 角动量 光学操控 光学自旋 手性颗粒 
光学学报
2024, 44(7): 0700001
李程峰 1,2,3何涛 1,2,3,*施宇智 1,2,3魏泽勇 1,2,3[ ... ]程鑫彬 1,2,3,**
作者单位
摘要
1 同济大学物理科学与工程学院精密光学工程技术研究所,上海 200092
2 同济大学物理科学与工程学院先进微结构材料教育部重点实验室,上海 200092
3 上海市数字光学前沿科学研究基地,上海 200092

光束偏折是光场操控的一项重要能力,也是众多光学应用的基础。随着光学技术的蓬勃发展,越来越多的应用场景迫切需要能够兼顾小型化和高效率的光束偏折光学器件。超构表面是人工原子按特定宏观排列方式构建而成的平面器件,具有强大的电磁场调控能力,能够在亚波长尺度下将光束偏折到任意非镜面方向,有望在实际应用中发挥巨大作用。从超构表面实现高效率异常偏折的物理机制出发,对超构表面异常偏折的应用研究进行回顾和讨论,同时也对潜在的挑战进行总结,对异常偏折超构表面及其应用的未来发展进行展望。

超构表面 亚波长结构 异常偏折 应用研究 
激光与光电子学进展
2024, 61(10): 1000001
冯超 1,2,3何涛 1,2,3,*施宇智 1,2,3王占山 1,2,3程鑫彬 1,2,3
作者单位
摘要
1 同济大学物理科学与工程学院精密光学工程技术研究所,上海 200092
2 同济大学物理科学与工程学院先进微结构材料教育部重点实验室,上海 200092
3 上海市数字光学前沿科学研究基地,上海 200092
偏振作为光场的基本自由度,在众多光学技术领域中有着十分广泛的应用。光学器件的偏振操控性能常用琼斯矩阵来表示,琼斯矩阵中可控通道数目的多少表征了对应光学器件的偏振调控能力强弱。随着光学技术的蓬勃发展,诸如偏振成像、通信编码、光学加密等前沿应用迫切需要光学器件能够独立调控多个琼斯矩阵通道,同时兼顾小型化。超表面作为由人工亚波长微结构按照特定序列排列而成的平面光学器件,天然具备集成化的优势,且对电磁波具有强大的调控能力,有望在偏振光学器件领域发挥巨大作用。从超表面的相位、振幅调控机理出发,按照可调控的通道数目从少到多对超表面调控琼斯矩阵的发展进行了系统梳理,并对超表面琼斯矩阵调控技术的未来发展进行了展望。
超表面 琼斯矩阵 偏振调控 多功能集成 
激光与光电子学进展
2024, 61(1): 0123001
陶也 1钟伟 1吴欣怡 1何涛 1,2,3,4[ ... ]程鑫彬 1,2,3,4,**
作者单位
摘要
1 同济大学物理科学与工程学院,同济大学精密光学工程技术研究所,上海 200092
2 先进微结构材料教育部重点实验室,上海 200092
3 上海市数字光学前沿科学研究基地,上海 200092
4 上海市全光谱高性能光学薄膜器件与应用专业技术服务平台,上海 200092
光镊技术通过在细小物体上施加光力对物体进行操控,而伴随光力产生的光力矩同样广泛存在于光学操控中。光力矩与光力一样,具有无接触、操控尺寸小、精度高等特点,在生物医学、物理学和量子科学等领域被广泛应用。光力矩根据其与施加光场偏振旋向的关系可分为正光力矩和负光力矩。从正负光力矩产生的原理和条件、光力矩的增强、光力矩的物理和生物应用出发,对光力矩光镊操控进行回顾和讨论,最后对光力矩光镊操控潜在的挑战进行了总结,对其未来的发展方向如微型扭矩测量、光驱动生物机器人等进行了展望。
光力矩 光镊 光流控 多功能操控 生物颗粒 
光学学报
2023, 43(16): 1623012
作者单位
摘要

光镊技术利用光与颗粒之间动量传递的力学效应对颗粒进行操控,具有无接触、操控尺寸小等优点,在生物医学和物理化学等领域具有重要的应用价值。光镊操控起初主要是在静态环境中对单个和多个颗粒进行操控,分为单/多光束光镊、全息光镊、等离子光镊、光纤光镊、特殊光力/力矩光镊和光电热镊子等。光镊技术随后与微流控技术进行结合诞生了光流控光镊操控技术,大大提高了可操控颗粒的数量和效率,同时也丰富了操控功能。本文从光流控光镊类别、物理机制以及生物医学应用等方面出发,对光流控光镊操控进行了回顾和讨论,最后对光流控光镊操控潜在的挑战进行了总结,对未来的发展方向如高通量单病毒操控和检测、光驱动机器人等进行了展望。

光学 精密工程
2022, 30(21): 2765
作者单位
摘要

同济大学精密光学工程技术研究所成立二十年来,以探索前沿科学问题、突破核心关键技术、服务国家重要应用为目标,形成了理论与模拟相结合、科学问题解决与关键技术突破相结合、基础研究与重要应用相结合的特色,形成了研究所的发展理念,打造了高水平研究平台,在X射线器件与系统、强激光薄膜与应用、光学纳米计量与测试、微纳光学与智能感知四个研究方向上取得了突出的研究成果,已成为高层次人才培养和高水平科学研究的重要基地。

光学 精密工程
2022, 30(21): 2555
Author Affiliations
Abstract
1 National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
2 Quantum Science and Engineering Centre, Nanyang Technological University, Singapore 639798, Singapore
3 Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
4 School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
5 e-mail: haoyl@pku.edu.cn
6 e-mail: yi_zhang@ntu.edu.sg
7 e-mail: eaqliu@ntu.edu.sg

We demonstrate a smart sensor for label-free multicomponent chemical analysis using a single label-free ring resonator to acquire the entire resonant spectrum of the mixture and a neural network model to predict the composition for multicomponent analysis. The smart sensor shows a high prediction accuracy with a low root-mean-squared error ranging only from 0.13 to 2.28 mg/mL. The predicted concentrations of each component in the testing dataset almost all fall within the 95% prediction bands. With its simple label-free detection strategy and high accuracy, the smart sensor promises great potential for multicomponent analysis applications in many fields.

Photonics Research
2021, 9(2): 02000B38

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!